
Impulsive End Condition for Diffusion Equation 

By Carl E. Pearson 

1. Introduction. Our purpose is to examine analytically and experimentally the 
error arising from the use of a finite difference method to solve a diffusion equation 
problem in which one boundary condition is impulsively changed. Specifically, 
we will consider the problem described by 

(1) Yt Yxz 

for 0 ? x < 1, with initial condition y(x 0) = 0 and end conditions y(O, t) = 1, 
y(1, t) = 0. Here x is position and t is time. The problem as stated is a nondimen- 
sional version of a heat-conduction problem in which a fixed temperature is sud- 
denly applied to one end of an initially cold bar. Other diffusion problems involving 
impulsive boundary conditions may require a more complicated description than 
that given by Eq. (1); additional terms, nonconstant coefficients, or nonlinearities 
may well be present. Nevertheless, it may happen that even in such a case, Eq. (1) 
provides an adequate description of the short-time behavior of the solution, and so 
is suitable for a discussion of the computation error over the first few time steps. 
Such is the case, for example, in the viscous fluid problem which motivated the 
present study [1]. 

For the most part, we will deal with an implicit version of the finite difference 
approximation to Eq. (1); in many problems, such an implicit scheme is generally 
desirable because of computational stability with respect to large time steps or 
with respect to the presence of additional terms in Eq. (1). Let the interval [0, 1] 
of the x-axis be divided into K sub-intervals, with Ax = l/K; denote the time step 
by At, and the ratio bt/(5x)2 by A. Then the finite difference equation to be con- 
sidered is 

(2) yl n y,n+ + [(y7+ + y7i - 2y,) + (yA+l + yn+i1 _ 2y- 

where y j denotes the computed approximation to y(x, t) at x = j. x and t = n -it. 
In the problem of Eq. (1), the value of y(0, t) is zero for t < 0 and unity for 

t > 0; this raises the question as to whether we should take 0 or 1, or some in-between 
value, say P, for the value of yo0 in Eq. (2). It is useful to recognize that P is a 
parameter whose value may be chosen at will; it will turn out that, given any value 
of A, there is a choice for P which minimizes the error. Thus, the initial and bound- 
ary conditions for Eq. (2) are: 

yjo=0 forj =1, 2,*...K y?0 = p 
(3) you = 1 for n 1, 2, * n, = 0 for all n. 

One of the topics discussed in the sequel will be the results of computer experi- 
mentation with Eqs. (2) and (3) for various values of A and P. Such solutions 
can be compared with the solution of Eq. (1), which for small values of time is 
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conveniently written * 

y(x, t) = erfc - erfc (2 x + erfc (2+ x) 

(4) ~ ~ 2V2t// 2V\t/ 
- erf c (42 ) x+ erfc 42+t 

where 

erfc() = +fe/ 2 dt. 

The computer solutions show that there can be substantial errors (and also 
oscillations) resulting from the use of Eq. (2). As n increases, these errors tend to 
become small; this effect has been observed by Albasiny [2] in a similar problem. 
We also describe the results of some computer solutions of Eq. (2) in which the 
first time step is, however, now made exact by use of Eq. (4). This turns out to 
result in a high degree of accuracy for future time steps; the efficacy of such a pro- 
cedure has been previously suggested in reference [3]. Results obtained by the use 
of an explicit difference equation as a replacement for Eq. (2) are also mentioned. 

In Section 3, we obtain some closed-form expressions for the solution of Eq. (2). 
These expressions are used to discuss analytically the behavior of the solution for 
small values of n and j; we also use them to show that, as n becomes large, the 
solution of Eq. (2) can be expected to approach asymptotically that of Eq. (1) 
(for any choice of A and P). We will simplify the derivation of these analytical 
results by setting K = oo in Eq. (3). That this is legitimate follows from the obser- 
vation that the discrepancy between the computed solution of Eqs. (2) and (3), 
and that given by Eq. (4), is usually important only for small values of t; for these 
small t-values, the effect of the end-condition at x = 1 (which is responsible for the 
presence of all terms beyond the first in Eq. (4)) is not felt. Thus, the closed-form 
solutions of Eq. (2) will be obtained for the initial and boundary conditions 

y;0 =0 forj1, 2, 3, ..., yo = P, 

yo I1 for n =1, 2, 3, ., yj >O as j -oo. 

2. Numerical Results. Choosing K = 100, computer solutions of Eqs. (2) and 
(3) were obtained for all possible combinations of values of A = 10, 2.5, 1, .25, 
and P = 1, .5, .25, .1, 0, and these computer results were compared with the exact 
solution as obtained by use of Eq. (4). Comparative tables of results were prepared; 
one representative table-for the case A = 2.5, P = 1-is included as Table 1 of 
the present paper. The first line of each double row is the computed solution, and 
the second line is the exact solution, at the mesh points x = j * Ax, t = n * St. Lack of 
space precluded the inclusion of the remaining tables, but copies are available from 
the author on request. 

Examination of these tables shows that in all cases the error decays as n in- 

* This form of the solution may be obtained by taking a Laplace transform in time of 
Eq. (1), expanding the transform function in powers of exp (-s), and integrating the inversion 
formula term by term. 
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creases; moreover, for any choice of A, the error can be minimized by choosing an 
optimal value for P (a formula for this optimal value will be obtained in Section 3). 
The fact that the solution becomes accurate after a certain number of time steps 
has the practical implication that, if a time step At is to be used through a given 
problem involving the kind of impulsive boundary condition here considered, then 
it may be useful to make a special calculation for the first time step. This special 
calculation would consist in dividing the first time step St into a number M of 
sub-intervals, with St' = At/M, and applying Eq. (2) to each such sub-interval; 
the appropriate values of M and P can be estimated from the above-mentioned 
tables (where A would be calculated from bt' rather than from bt, of course). 

Computer results were also obtained for A = 10, 2.5, 1, for the case in which the 
first time step is made exact by use of Eq. (4). Table 2 is typical of the results ob- 
tained. It is clear that this is a very effective procedure; although it may not always 
be practical to use Eq. (4)-or its equivalent in more complicated situations-the 
procedure described in the preceding paragraph may be feasible, and we can then 
deduce that accuracy in the first time step will lead to accuracy for successive time 
steps. Results were also obtained for the explicit formula 

(6) yj"' = yj" + A[y7+I + y/- - 2yj ] 

as a replacement for Eq. (2); for comparable values of A, errors resulting from the 
impulsive end condition were comparable to those obtained by use of Eq. (2). 
(Equation (6) is, of course, neither as stable nor as accurate as Eq. (2).) 

TABLE 1 

A = 2.500 P= 1.000 

J=1 JJ=2 J=3 J==4 J=5 J=6 J=7 J=8 J=9 

N = 1 0.8404 0.3531 0.1484 0.0624 0.0262 0.0110 0.0046 0.0019 0.0008 
0.6547 0.3711 0.1797 0.0736 0.0253 0.0073 0.0017 0.0003 0.0001 

N = 2 0.6862 0.5767 0.3635 0.2037 0.1070 0.0539 0.0264 0.0127 0.0060 
0.7518 0.5271 0.3428 0.2059 0.1138 0.0578 0.0269 0.0114 0.0044 

N = 3 0.8346 0.5837 0.4421 0.3101 0.2000 0.1207 0.0692 0.0381 0.0204 
0.7963 0.6056 0.4386 0.3017 0.1967 0.1213 0.0707 0.0389 0.0201 

N = 4 0.8054 0.6729 0.5024 0.3706 0.2652 0.1813 0.1181 0.0736 0.0441 
0.8231 0.6547 0.5023 0.3711 0.2636 0.1797 0.1175 0.0736 0.0442 

N = 5 0.8525 0.6805 0.5526 0.4263 0.3181 0.2307 0.1621 0.1101 0.0721 
0.8415 0.6892 0.5485 0.4237 0.3173 0.2301 0.1615 0.1096 0.0719 

N = 6 0.8497 0.7217 0.5826 0.4658 0.3626 0.2742 0.2018 0.1445 0.1007 
0.8551 0.7150 0.5839 0.4652 0.3613 0.2733 0.2012 0.1441 0.1003 

N = 7 0.8693 0.7321 0.6144 0.4996 0.3984 0.3111 0.2373 0.1767 0.1286 
0.8658 0.7353 0.6121 0.4990 0.3980 0.3105 0.2367 0.1763 0.1282 

N = 8 0.8726 0.7544 0.6345 0.5277 0.4298 0.3432 0.2688 0.2063 0.1551 
0.8744 0.7518 0.6353 0.5271 0.4292 0.3428 0.2684 0.2059 0.1547 

N = 9 0.8827 0.7644 0.6558 0.5512 0.4564 0.3715 0.2971 0.2334 0.1800 
0.8815 0.7656 0.6547 0.5510 0.4561 0.3711 0.2967 0.2330 0.1797 

N = 10 0.8869 0.7783 0.6710 0.5720 0.4798 0.3964 0.3225 0.2582 0.2034 
0.8875 0.7773 0.6714 0.5716 0.4795 0.3961 0.3222 0.2579 0.2031 
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3. Closed-form Solutions. We will now derive some analytical solutions of 
Eqs. (2) and (5). We begin by writing a version of the Fourier sine transform 
formulat applicable to a mesh-point function w(j) defined for j = 1, 2, 3, 

(7) w(j) = sin Xj sin(X2)dx w(k) sin Xk. 
7rJ (X/2) k-=1 

To solve Eqs. (2) and (5), we define a transform function Y(n, X) by 
00 

Y(n, X) - yj' sin Xj 
j=l1 

for n = 0,1, 2, * . . Multiplying each side of Eq. (2) by sin Xj, and summing over 
j from 1 to oo, we obtain a difference equation for Y(n, X) which-by use of the 
initial conditions described in Eq. (5)-is easily solved to give 

(8) Y(n) 4 sin2(X/2) 

where 

1 - 2AP sin2 (X/2) 1 -2A sin2 (X/2)n 
Q(n 'X) 1 + 2A sin2 (X/2) \1 + 2A sin52 (X/2) 

TABLE 2 
A = 2.500 P= 0 

J=1 J=2 J=3 J=4 J=5 J=6 J-=7 J=8 J=9 

N 1 0.6547 0.3711 0.1797 0.0736 0.0253 0.0073 0.0017 0.0003 0.0001 
0.6547 0.3711 0.1797 0.0736 0.0253 0.0073 0.0017 0.0003 0.0001 

N = 2 0.7563 0.5323 0.3449 0.2044 0.1108 0.0554 0.0259 0.0115 0.0050 
0.7518 0.5271 0.3428 0.2059 0.1138 0.0578 0.0269 0.0114 0.0044 

N = 3 0.7970 0.6070 0.4400 0.3023 0.1960 0.1198 0.0691 0.0378 0.0198 
0.7963 0.6056 0.4386 0.3017 0.1967 0.1213 0.0707 0.0389 0.0201 

N = 4 0.8235 0.6554 0.5028 0.3712 0.2632 0.1790 0.1166 0.0727 0.0435 
0.8231 0.6547 0.5023 0.3711 0.2636 0.1797 0.1175 0.0736 0.0442 

N = 5 0.8416 0.6893 0.5486 0.4236 0.3170 0.2296 0.1608 0.1089 0.0713 
0.8415 0.6892 0.5485 0.4237 0.3173 0.2301 0.1615 0.1096 0.0719 

N = 6 0.8551 0.7150 0.5838 0.4650 0.3610 0.2728 0.2007 0.1436 0.0998 
0.8551 0.7150 0.5839 0.4652 0.3613 0.2733 0.2012 0.1441 0.1003 

N = 7 0.8657 .0.7352 0.6119 0.4987 0.3976 0.3100 0.2362 0.1758 0.1277 
0.8658 0.7353 0.6121 0.4990 0.3980 0.3105 0.2367 0.1763 0.1282 

N = 8 0.8743 0.7517 0.6350 0.5268 0.4288 0.3423 0.2679 0.2054 0.1543 
0.8744 0.7518 0.6353 0.5271 0.4292 0.3428 0.2684 0.2059 0.1547 

N = 9 0.8814 0.7654 0.6545 0.5506 0.4556 0.3706 0.2962 0.2326 0.1793 
0.8815 0.7656 0.6547 0.5510 0.4561 0.3711 0.2967 0.2330 0.1797 

N = 10 0.8874 0.7771 0.6711 0.5713 0.4791 0.3957 0.3217 0.2575 0.2027 
0.8875 0.7773 0.6714 0.5716 0.4795 0.3961 0.3222 0.2579 0.2031 

t To derive this formula, define a function f(x) such that f(x) = w(j) for x in (j - -, 
j+ ),j = 1,2,3, , and f(x) = 0 for x in (0, '); then apply the usual sine transform 
formula f(x) = 2/7rf sin Xx d-fA sin Xt* f(s) dS. We assume that the behavior of w(j) for 
large j is such that this formula is valid for the corresponding function f(x). 
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Equation (8) is valid for n = 1, 2, 3, . From Eq. (7), we now obtain 

"= 1-_ 1 
' 

sin2Xj *cos X.Q(n, 2X) dX 

forj = 1, 2, 3, * n 1, 2, 3, * . We have taken advantage of the evenness of 
the integrand to change the range of integration to the interval (-, Xc). Using 
now 

and also the expansion 

1 X 1 '2X 2X 
2 2 - + 

2(2X)2 + 
X2 (4r)2 

we obtain 

(9) yj, = 1 - 2 sin 2Xj cos X cot (X/2).Q(n, 2X) dx. 

The usual e'" = z transformation would give a contour integral around the unit 
circle, and residues could be summed to give algebraic formulas for yj' for various 
choices of n, j; however, Eq. (11) will be more useful for this purpose. We will 
here use Eq. (9) to show that, for any choice of A and P, the solution becomes 
asymptotic to the first term of Eq. (4) as n becomes large. We observe that, for 
large n, Q(n, 2X) is small except near X = 0, +X; however, the regions near +Lr 
may be discarded because of the vanishing there of the rest of the integrand. Thus, 
for large n, only the neighborhood of the origin is important, and a conventional 
asymptotic calculation gives 

j.6ax Yn 1 j8 

This result is equivalent to the behavior of erfc(x/2v/t) for large t; 

x erfe 
(2 t 

. 1 - V(rt) 

so we conclude that the numerical solution given by Eq. (2) will normally become 
asymptotically correct, as n grows. 

To investigate the initial errors in the vicinity of x = 0, it is convenient to 
obtain a different form of Eq. (9). We introduce the generating function 

(10) y(Z j) = ynzn 
n 0 

where this power series in the complex variable z is assumed to converge. Multipli- 
cation of both sides of Eq. (2) by zn and summation over n from 0 to Xc gives a 
difference equation for Y(z, j); using the initial and end conditions (5), the solution 
of this difference equation is readily seen to be 

___ Pz 
(1)Y(z, j) = 1~~ + + ( ,i) (1 _z +1 + z) 

(ll) r ~~~~1. /1 -z /2 /1 -z\ 1 21 -z j1 
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From Eq. (9), we see that yj" is the coefficient of zn in the expansion around the 
origin of Y(z, j); this leads to the results: 

YiA (1 + P) A1 + - 1V(1 + 2A) 

Yi2 = {- + V + 2AX - i 3? 4A +3 Ys { ~A A \o/(l + 2A)} A +A \/(l + 2A)f 

Yi3 = f11 _ (1 + 2A) 2A + 3 _ 1 
Y1t1+A 2A L2A + 1 (2A + 1)21_ 

+P{1+3 + 2 _2 AA2+3A +1 1 4A } 
t A A2 A ~~/(1 + 2A)3 A o/1+2A)J 

Y2 (1 + P){1 +A - (1 +2A 

Y3 (1 + P) {11 + 2A)}, 
........................................ 

For comparison, the exact solution, as obtained from the first term of Eq. (4), is 

(yj') exact = erfc (2 V A)) 

It is clear that, for certain choices of A and P, the error can be very large over the 
first few time steps. In Section 2 we observed that it was desirable to make the 
error for the first time step, n = 1, as small as possible; this suggests that a cri- 
terion for choosing P can be obtained by minimizing the sum of squared errors for 
n = 1. Setting the derivative with respect to P of this squared error sum 

erf (2/A) - (1 + P) [1 + I- -V(1 + 2A)]} 

equal to zero, we obtain the criterion 

E {erfc (2A/A)-[1 + A 1 +2A)]} 

(12) P = .0{1 + A?AV(1 + 2A)} 

=1 K + A-A AV(1 + 2A)] 

The terms in Eq. (12) usually decrease rapidly with j, so that the formula is easy 
to use. For A = 1, for example, it gives 

.057 + .006 + .001 + = .83 
P=. .072 + .005 + 

(and from the tables of solutions it is seen that this is a reasonable result). Equation 
(12) also indicates that as A becomes large, P should be made small. 

Either from an examination of tables of computer solutions, or by use of Eq. 
(11), we see that the solution of Eq. (2) can be oscillatory for certain choices of A 
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and P; we remark that this feature is not exhibited by solutions of the explicit Eq. 
(6), since it is easy to show that yj'+l - yj is always >0, for any choice of A 
satisfying the stability condition A < 1. 
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